Manuel Shvartsberg

and

Matthew Poole

Edited by

in Architecture

Digital Technologies

Parametricism

The Politics of
List of illustrations

List of contributors

Acknowledgments

1 Introduction
 Matthew Poole and Manuel Shvartzberg

2 The historical pertinence of parametricism and the prospect of a free market urban order
 Patrik Schumacher

3 On numbers, more or less
 Reinhold Martin

4 There is no such thing as political architecture.
 There is no such thing as digital architecture
 Neil Leach

5 Parametricist architecture would be a good idea
 Benjamin H. Bratton

6 Play Turtle, Do It Yourself. Flocks, swarms, schools, and the architectural-political imaginary
 Manuel Shvartzberg

7 Breeding ideology: Parametricism and biological architecture
 Christina Cogdell

8 Speculation, presumption, and assumption: The ideology of algebraic-to-parametric workspace
 Matthew Poole
Chapter 3

On numbers, more or less

Rheinhold Martin
Two classes: quantitative and qualitative. A parameter controlling the structure of the model. In general, we can define the number of parameters across fields. The quantity is a measure of the degree to which the model is sensitive. However, it can also be used for other interesting properties, such as the ability to represent various phenomena. A key aspect is whether this parameter is meaningful across different domains. For example, in the context of climate science, the parameter controlling the temperature, which is related to the energy balance of the Earth, is well-defined. This is true for many other fields as well. In general, the parameter controlling the structure of the model is important.
Philosophical and ontological considerations of number involve the nature of the foundational issues that underlie the concept of number. The history of mathematics provides a rich context for exploring these foundational questions. In particular, the development of number theory has been a central theme in the history of mathematics, with contributions from ancient civilizations to contemporary research.

The natural numbers, or counting numbers, are the most basic concept in mathematics. They form the foundation for arithmetic and algebra, and are essential for understanding more advanced mathematical concepts. The natural numbers are defined in various ways, such as the set of all positive integers, or the set of all non-negative integers. Regardless of the specific definition, the natural numbers are the building blocks of mathematics.

In addition to the natural numbers, there are other types of numbers, such as the integers, rational numbers, real numbers, and complex numbers. Each type of number has its own properties and applications, and the study of these properties is a central theme in mathematics.

The concept of number has also been extended to include concepts such as infinity, and the idea of a number theory that deals with the properties of infinity has been developed. This extension of number theory has been a central theme in the history of mathematics, with contributions from ancient civilizations to contemporary research.

The study of number theory has also led to the development of new mathematical concepts, such as the concept of a group, which is a set of elements that can be combined in a specific way. The study of groups is a central theme in the history of mathematics, with contributions from ancient civilizations to contemporary research.

In conclusion, the concept of number is a fundamental concept in mathematics, and the study of number theory has been a central theme in the history of mathematics, with contributions from ancient civilizations to contemporary research.

The natural numbers, or counting numbers, are the most basic concept in mathematics. They form the foundation for arithmetic and algebra, and are essential for understanding more advanced mathematical concepts.
In order to change those things that are certain outcomes, is the process of changing those things that are uncertain outcomes. If we apply the principle of causality, a process that is defined as the relationship between cause and effect. It is important to note that the process of changing outcomes is not only dependent on the relationship between cause and effect, but also on the dynamic of the system itself. The system is composed of various elements, each with its own unique properties and interactions. The process of changing outcomes involves manipulating these elements in a way that is consistent with the principles of causality. This process is often referred to as "the art of change."
The principles that govern the modernist landscape developed in the mid-twentieth century are based on the belief that architecture is an art form. The principles include the use of materials, the integration of space, and the relationship between the building and its environment. These principles are reflected in the design of modernist buildings, which are characterized by their simplicity, functionality, and focus on the user experience.

The principles of modernist architecture are rooted in the ideas of the Enlightenment, which emphasized reason and the power of the individual. The modernist movement sought to create buildings that were free from the constraints of the past and that reflected the values of the contemporary world.

Modernist architecture has had a significant impact on the way we think about and use space. It has influenced the design of not only buildings, but also cities, landscapes, and urban environments. The principles of modernist architecture continue to influence contemporary design, and they remain relevant in the face of new challenges and opportunities.

In conclusion, the principles of modernist architecture are a testament to the power of design to shape our lives and our world. They remind us that the built environment is not just a backdrop for daily life, but a reflection of our values and aspirations. By embracing the principles of modernist architecture, we can create spaces that are not only beautiful, but also meaningful and transformative.
the human—no one counts the calculator. The computer—no one counts the computer. To record itself, replace the numbers of the word with its vocabulary. A man, a man, is math because he can read the numbers of the world with its vocabulary. It is math because it allows the human to count. Any "normal" method of counting is the human's method of counting. Any "normal" method of counting is the number's method of counting. The human's method of counting is the number's method of counting. The number's method of counting is the human's method of counting. The human's method of counting is the number's method of counting. The number's method of counting is the human's method of counting.

Counting is the process of transforming numbers into symbols. The process of transforming numbers into symbols is called "mathematics." Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols.

In mathematics, the process of transforming numbers into symbols is called "mathematics." Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols.

Counting is the process of transforming numbers into symbols. The process of transforming numbers into symbols is called "mathematics." Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols.

In mathematics, the process of transforming numbers into symbols is called "mathematics." Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols. Mathematics is the process of transforming numbers into symbols.

